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Latent variable (LV) models have been widely used in multivariate statistical process monitoring. However, 

whatever deviation from nominal operating condition is detected, an alarm is triggered based on classical 

monitoring methods. Therefore they fail to distinguish real faults incurring dynamics anomalies from normal 

deviations in operating conditions. In this article, a new process monitoring strategy based on slow feature 

analysis (SFA) is proposed for the concurrent monitoring of operating point deviations and process dynamics 

anomalies. Slow features as LVs are developed to describe slowly varying dynamics, yielding improved physical 

interpretation. In addition to classical statistics for monitoring deviation from design conditions, two novel indices 

are proposed to detect anomalies in process dynamics through the slowness of LVs. The proposed approach can 

distinguish whether the changes in operating conditions are normal or real faults occur. Two case studies show the 

validity of the SFA-based process monitoring approach. 
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Introduction 

 In industrial processes, it is crucial to detect and diagnose faults, process upsets and other 

abnormal events to achieve safe and efficient operations. In the last two decades, multivariate 

statistical process monitoring (MSPM) approaches have been extensively studied and 

implemented in the process control community.1-3 In general, they resort to massive process data 

measured in industrial processes rather than first-principle knowledge. Most industrial processes 

operate around certain well-controlled conditions that are designed in advance. Under design 

operation conditions, abundant routine data are archived and further analyzed to establish 

monitoring models. In general, the development of basic monitoring models includes the 
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following steps. First, some statistical distribution type { ( )}P x  of nominal process data x  is 

assumed. Parameters of ( )P x  are then empirically estimated using the data measured under 

nominal operating conditions. Finally, confidence limits are set by hypothesis tests with given 

significance levels. At present, a variety of basic MSPM studies (without adaptation) belong to 

this category, which utilize different characteristics of process data to design the steady 

distribution ( )P x  under nominal operating conditions. For example, significant correlation is a 

unique characteristic of process data because major variations are driven by a smaller number of 

essential factors, and the effective dimension of process variables is far lower than their actual 

dimension. In this context, latent variable (LV) models are desirable and popular in modeling the 

steady nominal distribution ( )P x , thereby gaining extensive attentions in data-driven process 

monitoring.4 They provide reduced dimensional subspaces to describe the essential sources of 

variations, and allow direct visualization and monitoring statistics design. Their intrinsic 

complexity could be highly reduced and hence generalization be enhanced. Typical data-driven 

approaches such as principal component analysis (PCA)5,6 and independent component analysis 

(ICA)7-9 can be applied to derive LV subspaces and calculate monitoring statistics, e.g., the 

Hotelling’s T2 statistic. 

In practical scenarios, variations in operating conditions are likely and common, which 

primarily arise from two aspects. First, the process objectives could be oriented actively according 

to planning and scheduling with the aim to meet changing demands for its products. For example, 

the set-point of the melt index in a propylene production process may be adjusted to meet the 

changing demand of the market. Second, some variations or disturbances, for instance, 

temperature changes in the ambient environment or the operating condition changes in the 

upstream unit, might as well exert influence on the operating condition of the process. In both 

cases, the steady distribution ( )P x  under normal operating condition is disrupted, and therefore 

alarms would be consistently triggered by basic MSPM methods; however, if the process remains 

well controlled owing to compensation of controllers, further actions become no longer necessary, 

and hence alarms in this context should be of not only less importance but also greater distinctions 

than those detecting real faults.10 Most hazardously, industrial practitioners cannot distinguish real 



3 

 

faults from such nominal changes in operating conditions simply based on monitoring results.  

 For process monitoring systems, the key to a correct discrimination between normal changes 

in operating conditions and real faults is to rely on the process dynamics because different 

dynamic behaviors are manifested in these two scenarios. In the case of normal changes in 

operating conditions, processes have a similar control performance to that in reference conditions, 

since all controlled variables are still well manipulated around their set-points by control loops. In 

the cases of real faults, processes are problematic because controllers essentially fail to attenuate 

or reject process anomalies, resulting in unusual dynamic behaviors. To deal with process 

dynamics, classical LV models have been extended to dynamic versions thereof, such as dynamic 

PCA (DPCA),11,12 dynamic PLS (DPLS)12,13 and dynamic ICA (DICA)14. They account for 

temporal similarities in measurements due to process settling time by means of low-dimensional 

LVs. Alternatively, state-space models based on subspace identification techniques15,16 have been 

applied to process monitoring tasks17.18. The latent states in the state-space formulation evolve 

over time in a Markovian fashion, thereby being temporally correlated. They can be deemed as 

abstractions of historical time series observations with dynamic information embodied. 

However, existing monitoring models cannot provide explicit representations for temporal 

behaviors of process data. More deeply, the steady-state operating condition of processes could be 

abstracted as the steady distribution ( )P x , whereas process dynamics could be perceived as the 

distribution of temporal variations ( )P x , which ought to be explained by temporal behaviors of 

LVs that are completely irrelevant with their steady states. They carry different information, 

analogous to the concepts of ‘position’ and ‘velocity’ in physics, respectively. In order to make a 

correct evaluation of process dynamics, temporal information should be separated from the steady 

counterpart such that the temporal dynamics and operating condition can be individually 

monitored. In this way, an accurate assessment of process dynamics that avoids the effect of 

steady-state operating condition can be made when the process shifts to a new working point but 

has nominal dynamics thanks to feedback control. Unfortunately, existing monitoring models fail 

to isolate the temporal information of ( )P x  completely from the steady-state distribution 

( )P x . Firstly, DPCA and DICA are inadequate in mining dynamic information from process data 
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because their LVs on behalf of essential driving factors of processes, are still assumed as 

statistically independent rather than temporally distributed a priori. Secondly, for state-space 

models, both temporal information of ( )P x  and the static information of ( )P x  are coupled in 

the hidden states, based on which monitoring statistics are established. Consequently, when the 

process deviates its operating condition, alarms will be raised and valuable temporal information 

will be buried.  

 Slow feature analysis (SFA) is a prevailing unsupervised dimension reduction methodology 

that extracts slowly varying LVs from temporal data.19 As a biologically inspired approach, SFA 

was first applied to the analysis of self-organization of complex-cell receptive fields using 

synthetic image sequences.20,21 In recent years, SFA has received increasing attentions and its 

applications in various fields have emerged, such as nonlinear blind source separation22,23, human 

action recognition24, and remote sensing25,26. Different from classical LV models, the LVs in SFA, 

which are termed as slow features, are assumed to be slowly varying a priori, and could be 

sequentially ordered according to their slowness levels that are statistically measurable. 

Mathematically, SFA enables separate descriptions to the steady-state distribution ( )P x  and the 

distribution of temporal variations ( )P x . Therefore, SFA has improved interpretation ability than 

classical LV models in terms of temporal coherence. In the present work, a new statistical process 

monitoring scheme is proposed based on SFA. In virtue of the interpretable slowness levels of 

slow features, two novel metrics, namely S2 and 2

eS , that characterize ( )P x
 

are proposed to 

monitor dynamic characteristics of processes, in addition to the T2 and 2

eT  statistics that are 

responsible for abstracting ( )P x  and detecting steady deviations from the design working point. 

With these two distinct groups of monitoring statistics, we can extract more meaningful 

information from routine data as an important reference to effectively distinguish between normal 

changes in operating status and real faults with dynamics disruptions. Particularly, when the 

process deviates its nominal operating condition due to set-point switches, the SFA-based 

monitoring method can not only recognize the operating condition deviation by monitoring 

( )P x  with the T2 and 
2

eT  statistics, but also effectively reveal whether or not the process is well 
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controlled by monitoring ( )P x  with the S2 and 2

eS  statistics. To investigate the feasibility of 

the proposed approach, its monitoring performance is evaluated and compared with those of 

classical MSPM methods via comprehensive case studies of a simple continuous stirred tank 

reactor (CSTR) process and the Tennessee Eastman (TE) benchmark process. 

The remaining part of this article proceeds as follows. In the next section, SFA is first 

introduced and reviewed with detail. Its geometric interpretation is also revealed that both the 

steady-state distribution ( )P x  and the temporal distribution ( )P x  can be individually 

approximated. Similarities and differences between PCA, ICA and SFA are discussed in Section 

“Comparisons between PCA, ICA and SFA.” The SFA-based process monitoring scheme and 

associated fault detection indices are developed in Section “Process Monitoring with Slow 

Features.” In Section “CSTR Case Studies”, the effectiveness of the proposed method is illustrated 

through a simple CSTR case. Section “Tennessee Eastman Benchmark Process Case Studies” 

presents performance of the SFA-based monitoring scheme on the TE benchmark process and 

comparisons with classical monitoring approaches, followed by concluding remarks in the final 

section. 

 

Overview of Slow Feature Analysis 

Optimization problem 

Given a multidimensional input signal, the goal of SFA is to find instantaneous scalar 

input-output mapping functions of which output signals have as slow variations as possible. The 

output signals, conceived as LVs, would carry major information provided that a temporal 

structure is embodied in input data. Mathematically, the optimization problem of SFA can be 

defined as follows.19 Assuming that there exists an m-dimensional temporal input signal 

 
T

1( ) ( ), , ( )mt x t x tx , SFA aims to find a set of feature functions 1{ ( )}m

j jg   such that for 

the LVs  
1

( ) ( ( ))
m

j j j
s t g t


 x ,  

   
2

( )
min  

j
j tg

s


                                 (1) 

under the constraints 



6 

 

0j t
s      (zero mean)                          (2) 

    
2 1j t

s      (unit variance)    
                    

(3) 

:    0i j t
i j s s       (decorrelation and order)   

             
(4) 

where 
2( )j j t

s s   can be seen as a measure of the slowness of ( )js t , s  indicates the 

first-order derivative of the LV with respect to time, and 
t

  denotes temporal averaging, 

defined as 

1

0
1 0

1
( ) .

t

t t
f f t dt

t t


                             (5) 

The objective in (1) explicitly aims at minimizing the temporal variation of LVs, which are 

referred to as slow features (SFs) in this work. In other words, their variations should be as slow as 

possible. Constraint (2) is added merely to simplify the problem without loss of generality. 

Constraint (3) helps avoiding the trivial solution ( ) constjs t   and enforces SFs to incorporate 

some information. Constraint (4) guarantees that SFs carry different information and do not 

simply reproduce each other. In addition, a descending order can be assigned to 1{ ( )}m

j js t   such 

that the most slowly varying SF has the lowest index. The first SF 1( )s t  is the slowest, and 

2 ( )s t  is the second slowest, and so forth. The number of slow features is assumed as equal to that 

of input variables. 

 In general, the form of feature functions can be chosen as linear combinations of some basis 

functions: ( ) : ( )j ji ii
g W fx x , where ( )if x  is the basis function selected in advance. In 

linear cases, the feature function can be simply expressed as 

T( )j j js g x w x ,                            (6) 

where  
1

m

j j
w  denote coefficient vectors. It is equivalent to finding a matrix 

 
T

1 mW w w  such that 

. Ws x
                                 

(7) 

In this work only the linear case is considered. Substituting (6) into Constraint (2), we obtain: 
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T 0. j j tt
s  w x

                           

(8) 

It can be seen that Constraint (2) is automatically fulfilled if the input variables x have been scaled 

to zero mean in advance. 

The SFA algorithm 

 A simple algorithm for performing linear SFA has been developed in Ref. 19. Assume that 

the input data x have zero mean. Similar to ICA, the initial step in linear SFA is whitening, also 

known as sphering, which eliminates all cross-correlations between input variables. The whitening 

can be readily accomplished via classical PCA. Assuming that the covariance matrix 
T

t
xx  has 

the following singular value decomposition (SVD): 

T T ,
t
 U Uxx                               (9) 

the whitening transformation can then be expressed as 

1/2 T U Qz x x
                           

(10) 

where 
1/2 TQ U  is the whitening matrix. It obviously holds that 

T T T

t t
 Q Q Izz xx  and 

t
 0z . Hence the objective of linear SFA is identical to 

finding a matrix 
1P WQ  that satisfies  Ps z  because

 

1 .  W WQ Ps x z z                           (11) 

Then notice that Constraints (3) and (4) can be compactly rewritten in a covariance matrix 

form: 

T .
t
 Iss                                (12) 

Substituting (11) into (12), we have 

T T T T

t t
  P P PP Iss zz                       (13) 

which implies that P must be an orthogonal matrix. Therefore the optimization problem of linear 

SFA reduces to finding an orthogonal matrix P such that 
2

j t
s  is minimized with  Ps z . This 

can be easily resolved by applying SVD to the covariance matrix 
T T

t
 P Pzz   and obtaining 

orthogonal eigenvectors  
1

m

j j
p  and the corresponding eigenvalues  

1

m

j j



. Assuming that 
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eigenvalues  
1

m

j j



 are organized in an ascending order, we can easily verify that 

T T T

2 T T

,

.

t t

j j j jt t
s 

 

 

P P Iss zz

p zz p
                        (14) 

In addition, it holds that i j  , 0i js s  . The proof is given in Appendix A. Notice that 

linear SFA is able to reach the global optimal solution because the global minimum of 
2

j t
s  can 

be found by means of SVD. Finally the transformation matrix W can be calculated as 

1/2 T. W PQ P U                          (15) 

 In practical scenarios, process data ( )tx  are often collected with a discrete sampling 

interval t . Therefore, the temporal derivative can be empirically approximated as 

( ) ( )
( ) .

j j

j

z t z t t
z t

t

 



                        (16) 

Geometric properties of SFA 

An elegant geometric interpretation for SFA has been provided by Turner and Sahani27, 

which is introduced here to illustrate that SFA can simultaneously model both the steady-state 

distribution ( )P x  and the temporal distribution ( )P x . Figure 1 gives a two-dimensional 

example of geometric properties of SFA. In the first step of the SFA algorithm, original inputs are 

first sphered, as indicated by (10). Figure 1(a) shows the covariance 
T

t
zz  of the sphered 

transformations 1 2{ , }z z , conceptually plotted as an isotropic blue circle. Figure 1(b) depicts the 

covariance 
T

t
zz  of the temporal derivatives 1 2{ , }z z , plotted as a red dotted ellipsoid. Then 

in the second step, the slow feature directions, which are expressed as arrows in Figures 1(a) and 

1(b), are obtained by eigen-decomposition of the covariance 
T

t
zz  in Figure 1(b). Notice that 

the direction of 1s  coincides with the minor axis of the ellipsoid because the slowest feature 

corresponds to the smallest eigenvalue, which indicates the optimal value in the minimization 

problem of (1). This differs from PCA since dominant PCs tend to capture the most variances in 

input data and result in a maximization problem. It can be clearly seen that the steady-state 

distribution ( )P x  is characterized by the transformed slow features s in Figure 1(a), which are 



9 

 

distributed as isotropic Gaussian; and the dynamic behavior ( )P x  is characterized by the 

distribution of temporal variations s , which is assumed as non-isotropic Gaussian. In this sense, 

SFA provides exclusive allowance for both the steady-state distribution ( )P x  and the temporal 

distribution ( )P x . 

 

Figure 1. A two-dimensional example of the geometric interpretation of SFA. (a) Covariance  

T

t
zz  of the sphered space (blue circle) that characterizes ( )P x . (b) Covariance 

T

t
zz  of 

temporal difference in the sphered space (red dotted ellipsoid) that describes ( )P x , and slow 

feature directions (red arrows). 

Statistical Properties of SFA Assuming that all diagonal entries of   are non-zero, matrix W 

will be invertible and thus x can be represented as a linear combination of SFs s as Rx s , 

where  

 
1 1/2 T R W U P .                         (17) 

And the statistical properties of SFA can be finally summarized as 

T T,  { } ,  { } ,  { } ,  { } ,    R 0 I 0x s s ss s ss             (18) 

such that 

T T T 1/2 T 1/2 T{ } ,  { } ,  { } ,  { }   0 U U 0 U P P Ux xx x xx    .     (19) 

Dynamic SFA 

 Notice that SFs 1{ ( )}m

j js t   are calculated by using process data ( )tx  measured at the 

current snapshot t. It implies that SFs cannot be derived by filtering time series data, being 

irrelevant with observations at past time. It violates the physical truth of chemical processes that 
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underlying factors are related to historical process data in a period of time due to process 

dynamics. In this regard, SFA can be extended to its dynamic version by augmenting each input 

vector with d lagged samples and stacking the data matrix as follows: 

T T T

T T T

( 1)

T T T

( ) ( 1) ( )

( 1) ( ) ( 1)
( ) ,

( 1) ( 2) ( 1)

m d N

t t t d

t t t d
d

t N t N t N d

 

  
 

    
 
 

        

x x x

x x x
X

x x x
   

(20) 

where N denotes the number of available process samples. Therefore, the input dimension of the 

SFA model becomes ( 1)m d  . 

 

Comparisons between PCA, ICA and SFA 

 One similarity shared by PCA, ICA and SFA is that a low-dimensional LV subspace exists. In 

linear cases, their LVs are obtained via a linear combination of high-dimensional inputs. However, 

they are characterized by different physical meanings, which are summarized in Table 1. The LVs 

in PCA, named principal components (PCs), are expected to have as much variances as possible. 

The LVs in ICA, named independent components (ICs), are expected to be as statistically 

independent as possible. SFs in SFA are assumed to be as slowly varying as possible. 

Table 1. A Brief Comparison of Different Latent Variable Models 

Model Name of LV Properties of LV 

Ordering 

Criterion for 

LV 

Global 

Optimality 

Computation 

Complexity 

PCA 
Principal 

Component (PC) 

Having as much 

variance as possible 

Captured 

Variance 
√ 

1 SVD for 

optimization 

ICA 
Independent 

Component (IC) 

Being as statistically 

independent as 

possible 

No Standard 

Criterion 
× 

1 SVD for 

sphering + 

iterative 

optimization 

SFA 
Slow Feature 

(SF) 

Being as slowly 

varying as possible 

Temporal 

Slowness 
√ 

1 SVD for 

sphering + 1 SVD 

for optimization 

 

Both PCA and SFA provide explicit criteria for ordering LVs, as shown in the fourth column 

of Table 1. The ordering of LVs, however, is very difficult in ICA and there is no standard 

criterion.28 In addition, PCA and SFA can reach global optimum. The above limitations add some 
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difficulties in applying ICA to process monitoring. 

As for the computational complexity, PCA is the simplest since only one step of SVD is 

needed. The computational cost of SFA is relatively low because only an additional SVD helps 

deriving all parameters, which provides implementation convenience for applying SFA in practical 

scenarios. It can be seen from the last column of Table 1 that ICA and SFA share one similarity 

that PCA is performed to sphere data in the first step. However, ICA has the most tedious 

algorithm because it involves iterative optimization in subsequent steps.  

Formal equivalence between ICA and linear SFA 

 At first glance, ICA and SFA are different dimension reduction approaches because they have 

their own optimization objectives. The objective in SFA can be explicitly expressed as (1), while 

the statistical independence in ICA is difficult to optimize and necessitates approximate solutions. 

Ref. 28 proposes to use degrees of non-Gaussianity such as kurtosis and negentropy as an alternate 

for statistical independence. It is worth mentioning that ICA can be performed as well by using 

other criteria to measure independence. In fact, if the second-order correlation with time delay one, 

i.e.,  

T T1
( ) ( ) ( ) ( ) ( )

2 t t
C t t t t t t t     

 
s s s s                 (21) 

is used to measure statistical independence, ICA becomes formally identical to linear SFA.29 

Therefore, both classical ICA and linear SFA could be conceived to pursue statistical 

independence, only with different criteria to measure independence. The SFA utilizes time shift 

correlation to cover dynamic patterns, leading to a better interpretation for temporal structures. In 

this sense, SFA is superior to ICA in extracting dynamic information from time series data. An 

inevitable limitation of SFA is that correlation is used instead of independence, which might cause 

loss of information. 

 

Process Monitoring with Slow Features 

Dimension reduction of SFA 

 In the aforementioned SFA algorithm, the number of acquired SFs is the same as that of 

process variables. In order to carry out dimension reduction and denoising, only a small portion of 

SFs which carry significant information should be selected to reduce the model complexity, 
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whereas the remaining ones correspond to unimportant residuals. If SFA is applied to chemical 

process data, the derived slowest features tend to catch the general trend of process variations, 

whereas the fastest ones can be seen as short-term noises. For dimension reduction purposes, it is 

therefore reasonable to select  ( 1)M m d   slowest features 1{ , , }Ms s  as the dominant 

components.  

 The choice of M, i.e., the number of SFs is an important issue in process monitoring. 

Including too many SFs may put unnecessary emphasis on noise and further deteriorate 

monitoring performance. Unfortunately, there are few objective guidelines for choosing the 

number of SFs. Here we suggest a criterion from a reconstruction standpoint. A process variable 

jx  can be exactly recovered from slow features via the following linear mapping: 

T

j jx  r s
                                

(22) 

where 
T

jr  denotes the jth row of 
1R W . For dimension reduction purposes, a few SFs are 

selected to derive the following denoised reconstruction 

rec Tˆ
j jx  r s ,                               (23) 

where ˆ
jr  is the reconstruction vector formed by replacing some components of jr  with zeros.  

The slowness 
rec( )jx  is an objective criterion to evaluate the importance of information 

retained in the reconstruction 
rec

jx . Including too much fast varying noise would inevitably entail 

a high value in 
rec( )jx . Because of the denoising effect, an appropriate reconstruction 

rec

jx  is 

expected to have slower variations than the original input 
jx , i.e., 

rec( ) ( )j jx x   . The 

following proposition reveals that ( )jx  is linearly dependent on ( )is . 

Proposition 1: The slowness of 
jx  is a weighted sum of the slowness levels of all SFs. That is, 

( ) ( )j i ii
x s                              (24) 

where 
2 2/i ji jii

r r    and 1ii
  . 

The proof of Proposition 1 is given in Appendix B. From (24), we see by inspection that the 

SFs with ( ) ( )i js x    that vary faster than 
jx  tend to drive 

jx  to be faster, whereas the 
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SFs with ( ) ( )i js x    that vary slower than 
jx  tend to drive 

jx  to be slower. To remove 

the noise effect, an intuitive choice is to remove those faster SFs with ( ) ( )i js x    because 

they make 
jx  faster. Interestingly, it can be proved that such an empirical strategy renders 

reconstruction slower according to the following proposition. 

Proposition 2: If ĵ j jk kr r r e  where 
ke  stands for the jth unit vector, of which the jth 

component is one and the others equal zero, along with the index k satisfying ( ) ( )k js x   , a 

slower reconstruction would be obtained such that 
rec( ) ( )j jx x   . 

The proof of Proposition 2 is given in Appendix C. In this way, we can sequentially preclude 

the fastest feature from SFs that are kept, thereby continuously driving the reconstruction slower. 

As discussed in Proposition 1, we suggest removing SFs that are faster than all input variables, the 

number of which is given by 

  card | ( ) max ( )e i i j jM s s x    ,                  (25)  

where card{}  denotes the number of elements in a certain set. The number of dominant SFs can 

then be calculated as 

( 1) ,eM m d M                              (26) 

However, the estimation in (25) might be not robust because the maximum function is sensitive to 

outliers. Process variables used for monitoring are usually selected manually, and thus some 

process-irrelevant but fast varying signals might be involved, resulting in an inadequate estimation 

of eM . In this regard, we use the quantile statistic instead. The estimation for eM  can then be 

rectified as 

  card | ( ) max ( )q

e i i j jM s s x    ,                  (27) 

where we can set 0.1q   and  max ( )q

j jx  stands for the q-upper quantile of the set 

 ( )jx . Finally, the dominant slowest SFs with reduced dimension can be expressed as 

T

1[ , , ] M

d Ms s s , whereas the remaining fastest ones are denoted as 

T

1 ( 1)[ , , ] eM

e M m ds s  s . 
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Monitoring statistics with SFs 

Based on the low-dimensional SFA model given in the previous subsection, monitoring 

indices are established with reference to both distributions ( )P x  and ( )P x . Dominant SFs 

ds  and residual SFs es  form an orthogonal decomposition to the data space of x. First, the 

Hotelling’s T2 statistic is applied to both ds  and es  to characterize ( )P x  for monitoring the 

systematic change of a common cause, similar to that of PCA- and ICA-based monitoring 

methods. Noticing that SFs have unit variances, the Hotelling’s T2 statistics are defined as follows: 

2 T ,d dT  s s                                (28) 

2 T

e e eT  s s .                               (29) 

According to (12), SFs 
T T T T

1 ( 1)[ , , ] [ , ]m d d es s  s s s  are assumed to be independently 

Gaussian distributed. Therefore, the 2T  statistic follows a 
2  distribution with M degrees of 

freedom, and the 
2

eT  statistic follows a 
2  distribution with eM  degrees of freedom,30 i.e., 

2 T 2~d d MT  s s ,                            (30) 

2 T 2~
ee e e MT  s s .                            (31) 

 The T2 statistic measures the static variations inside the subspace spanned by the dominant 

slowest SFs, whereas the 
2

eT  measures the static variations of the remaining fastest SFs. These 

two statistics are responsible for evaluating the correspondence of a data point with the 

steady-state distribution ( )P x . Besides, temporal slowness, i.e. 

T T T T

1 ( 1)[ , , ] [ , ]m d d es s  s s s , is also an important attribute of SFs, which actually describes 

the temporal distribution ( )P x , i.e. temporal dynamics within processes. As indicated by 

Appendix A, ds  and es  also form an orthogonal decomposition to the data space of x . It is 

then straightforward to define analogous monitoring indices for ds  and es  as S2 and 
2

eS  

statistics, to describe the distribution of dynamic variations in nominal operation. These two 

statistics are calculated as follows: 
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2 T 1

d d dS  s s ,
                             

(32) 

2 T 1 .e e e eS  s s
                             

(33) 

where d  and e  denote the empirical covariance matrix of ds  and es , respectively, which 

are calculated as 
T

1diag{ , , }d d d Mt
  s s  and 

T

1 ( 1)diag{ , , }e e e M m dt
   s s . With postulation that both ds  and es  follow 

multivariate Gaussian distributions, the S2 statistic follows a scaled F-distribution with M and 

1N M   degrees of freedom, and the 
2

eS  statistic follows a scaled F-distribution with eM  

and 1eN M   degrees of freedom:2,31 

2

, 1~ M N MS gF   ,
                             

(34)  

2

, 1~
e ee e M N MS g F   ,          

                  
(35) 

where constants g  and eg  are computed as 

2( 2 )

( 1)( 1)

M N N
g

N N M




  
,                         (36) 

2( 2 )

( 1)( 1)

e
e

e

M N N
g

N N M




  
.                        (37)

 

To use the above indices for monitoring, control limits should be estimated using routine data. 

With (1 )
 

confidence level, the monitoring policy can be summarized as follows: 

1. If 
2 2

,MT   or 
2 2

,ee MT  , a steady deviation from the design operating condition 

is detected.  

2. If 
2

, 1,M N MS gF    or 
2

, 1,e ee e M N MS g F   , a potential anomaly in process 

dynamics is detected. 

In summary, four indices of the SFA-based process monitoring method are used in together 

with different physical meanings. The 
2T  and 

2

eT  statistics measure the consistency of a data 

point x with the steady-state distribution ( )P x , whereas the 
2S  and 

2

eS  statistics evaluate the 
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its consistency with the temporal distribution ( )P x . In practice, the proposed monitoring 

scheme recognizes steady deviation from design operating point using the 
2T  and 

2

eT  indices, 

and detects variations in dynamic characteristics of processes using the 
2S  and 

2

eS  indices. If 

either 
2S  or 

2

eS  goes beyond the control limit after 
2T  or 

2

eT  detects a steady deviation, 

process dynamics is considered to be affected by a certain fault and further measurements should 

be taken. If both 
2S  and 

2

eS  return normal after either 
2T  or 

2

eT  exceeds the threshold, the 

disturbance is considered as having no influence on process dynamics and all controlled variables 

are under control although a new operating status has been created.  

 

CSTR Case Studies 

In this section, the proposed method for process monitoring is illustrated through a simple 

non-isothermal CSTR process32 with clear first-principle knowledge incorporated in typical fault 

scenarios. The process has one feed stream that contains the reactant A, one product stream, and a 

cooling water stream. It is assumed that the tank is well mixed and its physical properties keep 

constant. The CSTR process can be described by the component material balance and the energy 

balance, which are formulated as a set of differential equations:  

  0 1expA
Af A A

dC q E
C C k C v

dt V RT

 
     

 
                 (38) 

   0 2expf A c

p p

dT q H E UA
T T k C T T v

dt V C RT V C 

  
       

 
         (39) 

where CA is the outlet concentration, T is the reactor temperature, Tc is the temperature of cooling 

water, q is the feed flow rate, CAf is the feed concentration, Tf is the feed temperature, and [v1, v2]
T 

are independent system noises. In the simulation, [CA, T]T are controlled variables with nominal 

values, and [q, Tc]
T are chosen as manipulated variables with feedback from control errors. A 

sampling interval 1 mint   was used to collect the measured process variable [CA, T, Tc, q]T, 

to which measurement noise e is added. In addition, random disturbances, which are modeled as 

first-order auto-regressive processes, were added to the system. Negative feedback inputs were 

added to [q, Tc]
T with PID controllers as 2 1( / )d IK T s T s  K , where 
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* * T[ , ]A AC C T T     is the residual vector. All the system parameters and conditions are 

reported in Table 2. 

Table 2. Simulation Condition of CSTR 

Simulation 

parameters 

17835.821 J/mol,  1000 g/L,  / 5360 K,

11950 J/(min K), 0.239 J/(g K)p

H E R

UA C

   

   
  

Initial conditions 100 L/min,  419 K,  1 mol/Lc Afq T C     

Nominal values 
* *0.2 mol/L,  446 KAC T    

Controller setting 1 21, 0.1, 10, [5,1;1,2]d IK T T   K   

Measurement 

noise 6 6

~ (0,0.005), ~ (0,0.005),

~ (0,10 ), ~ (0,10 )

A

c

T C

T q

e N e N

e N e N 
  

System 

fluctuations 

1 1 1

2 2 2

( ) 0.999 ( 1) 0.001 ( ),

( ) 0.999 ( 1) 0.001 ( ),

~ (0,1) ( 1,2), 0.1

e

e

i e

v t v t e t

v t v t e t

e N i







  

  

 

  

 There are 2000 normal samples to build four monitoring models, i.e., DPCA, DICA, 

canonical variate analysis (CVA) and linear SFA. In this work, CVA is chosen as a representative 

state-space model widely applied to process monitoring15,18 for comparisons. The auto-correlation 

plots are shown in Figure 2, in which we can observe that x1 shows high correlations with x3 and 

x4 with one time lag. Therefore, one lagged variable of each measurement is sufficient to include 

relevant dynamic information and is hence adopted for all methods. Two PCs are selected for 

DPCA according to cross-validation based on the PRESS statistic33,34, and two ICs are selected for 

DICA according to Ref. 9. For CVA, the order of state-space is chosen as 2 according to dominant 

singular values35. For SFA, the coefficient matrix W is calculated as: 

0.0756 0.0698 0.0045 0.0214 3.5149 3.1707 3.7276 3.6521

0.9695 0.9758 0.2282 0.2127 4.1806 6.4189 3.3021 5.9049

0.2681 0.2363 0.6882 0.6782 0.6354 2.2702 0.2697 2.1950

0.0955 0.1574 0.0533 0.0588 8.5809 62.1334 0.372

   

 

   

 
W

1 62.5218

0.0035 0.0400 0.0239 0.0540 3.3829 11.6869 5.2223 12.5184

0.8848 0.9070 0.3629 0.3480 3.5271 1.7527 2.9357 1.3636

0.5450 0.5165 0.6223 0.6345 3.1600 2.7806 2.7625 2.4435

0.0453 0.0111 0.0295 0.0367 3.437



    

   

   

   1 3.0933 3.1743 2.6397

 
 
 
 
 
 
 
 
 
 
 

  
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(40) 

and the optimal number of slow features is determined as 5 based on the proposed criterion. Two 

test datasets are elaborated with abnormal conditions with the aim to demonstrate the monitoring 

capability of the SFA-based approach. In the first dataset, the disturbance is set to change the 

operating condition only, while in the second dataset, both the operating condition and process 

dynamics are affected. There are 2000 samples in each test dataset, and the corresponding 

disturbance is introduced from the 300th sample and removed at the 1300th sample. Detailed 

settings of abnormal datasets are tabulated in Table 3. The 99% confidence limits are obtained 

from data in nominal operating condition for DPCA, DICA, CVA and SFA. 

 

Figure 2. Auto-correlation plots for four input variables in the CSTR example 

 

Table 3. Two Cases with Different Process Disturbances in the CSTR Example 

Case Description 

Disturbance changes the 

operating condition only 

Sample 1-300: Tf  = 400 K 

Sample 301-1300: Tf  = 401 K 

Sample 1301-2000: Tf  = 400 K 

Disturbance simultaneously 

affects the operating condition 

and dynamic performances 

Sample 1-300: k0 = 6.6105 min-1 

Sample 301-500: k0 linearly decreases to 5.0105 min-1 

Sample 501-1300: k0 = 5.0105 min-1 

Sample 1301-2000: k0 = 6.6105 min-1 

Disturbance changes the operating condition only 

In this scenario, a minor increase of 1 K occurs in the feed temperature Tf. Because the 

reactor temperature is controlled by manipulating the coolant temperature, the entire process could 

become under control again after the compensation. Notice that dynamic behaviors of process in 
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this case remain unchanged. This can be deduced from the fact that time constants of [CA, T]T in 

(38) and (39) are irrelevant with [Tf, T]T, and the temperature of cooling water Tc would be 

adjusted to compensate the change in the feed temperature Tf , rendering the constant term in (39) 

unchanged. Therefore, when the disturbance occurs, the reactor temperature can still be well 

controlled around 446K (its set-point value), as shown in Figure 3. The monitoring results are 

shown in Figure 4. For this tiny external disturbance, DPCA fails to detect it in both indices, while 

both DICA and CVA successfully detect it. However, we cannot distinguish whether or not this 

disturbance actually deteriorates the control performance from results of DICA and CVA. Note 

that although the canonical variates (CVs) of CVA are temporally correlated, they contain 

information about both temporal variations and steady states, and thus cannot give an explicit 

assessment of temporal dynamics. In contrast, the SFA-based approach delivers a reasonable 

monitoring result. On one hand, the T2 index is obviously magnified, indicating that the operating 

condition has changed. On the other hand, the 
2S  and 

2

eS  indices stay below control limits 

thereof after the process enters a new operating condition, indicating that process dynamics is still 

normal. A simultaneous utilization of these four indices is able to not only monitor this disturbance 

sensitively but also recognize that the process still operates normally. In particular, the 
2S  and 

2

eS  indices provide additional insight into the control performance. Nominal values of the 
2S  

and 
2

eS  indices indicate that all controlled variables are under good control. Considering the case 

that controlled variables fail to return to set-points thereof, controllers will tend to make unusual 

responses that differ from the nominal condition, thereby affecting process dynamics. In this 

example, the reactor temperature is under control as shown in Figure 3, which is consistent with 

trends of the 
2S  and 

2

eS  indices. In addition, temporary effects of controllers when Tf is 

changed are exhibited as two significant peaks in the S2 chart around the 300th and the 1300th 

samples in Figure 4(d). 
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Figure 3. The reactor temperature in the presence of step changes in the input reactant temperature 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 4. Monitoring results for an increase in the feed temperature. (a) DPCA, (b) DICA, (c) 

CVA, (d) SFA. 

Disturbance simultaneously affects the operating condition and dynamic performances 

 In this scenario, a deactivation of catalyst causes changes in process dynamics. Because k0 is 

directly related to the time constant of CA (see (38) and (39)), the process dynamics would be 

affected as expected. Therefore the control performance would deteriorate after the deactivation of 

catalyst. The monitoring results are shown in Figure 5. In the DPCA-based monitoring, the fault 

can be detected by the SPE index; however, there are still many samples below the control limit. 

All charts in DICA and CVA are able to detect this fault, but in a similar manner to the previous 

example; however, a clear interpretation of temporal dynamics which distinguishes from normal 

changes in operating conditions is absent. Hence this crucial fault would be masked in massive 

alarms of DICA and CVA. In contrast, the 
2T  and 

2

eT  indices of SFA also manage to detect this 

fault, and subsequently S2 implies that this fault does affect process dynamics. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 5. Monitoring results for a deactivation of catalyst. (a) DPCA, (b) DICA, (c) CVA, (d) 

SFA. 

False alarm rates with out-of-sample normal data 

Generalization ability is a major concern about monitoring models. From a viewpoint of 

process monitoring, weak generalization ability inevitably incurs a high false alarm rate (FAR) 

because the model could be easily violated by out-of-sample normal observations. In this regard, 
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we calculate FARs of diverse models using an independent test dataset with 2000 routine samples, 

which is not used for model training. The results are given in Table 4, in which we can observe 

that four statistics of the SFA-based monitoring model give satisfactory FARs comparable to those 

of DPCA, DICA and CVA. For four models, their false alarms can be further reduced using a more 

flexible rule that an alarm is indicated only when points in a moving window consecutively fall 

out of the control limit, as shown in the last column of Table 4. Using a window length 2l  , 

which indicates that an alarm is issued only when two consecutive violations in the control limit 

are detected, effectively helps pruning out all unnecessary false alarms. In this respect, SFA can fit 

process data desirably and the related monitoring scheme is practically applicable. 

Table 4. False Alarm Rates in the CSTR Example (%) 

 Window Length 1l   Window Length 2l   

DPCA 

T2 0.85 0 

SPE 0.55 0 

Overall 1.40 0 

DICA 

I2 1.10 0 

2

eI  1.05 0 

SPE 1.95 0 

Overall 3.55 0 

CVA 

2

dT  1.35 0 

2

rT  0.55 0 

Overall 1.90 0 

SFA 

T2 0.95 0 

2

eT  0.60 0 

S2 0.40 0 

2

eS  0.85 0 

Overall 2.45 0 

 

Alarm patterns of typical disturbances 
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 In the CSTR example, we have shown that although various disturbances lead to operating 

condition deviations, they are characterized by significantly different dynamic behaviors, thereby 

making alarms of the SFA-based model manifest discrepant patterns. Step changes, drifts, and 

random variations are typical types of disturbances that are of primary interests in process 

monitoring tasks. Therefore, in order to further assess the performance of the SFA-based 

monitoring approach, we examine the alarm patterns in the context of idealized disturbance. Table 

5 lists the descriptions to three different disturbances, and monitoring results of SFA are shown in 

Figure 6.  

Table 5. Different Typical Disturbances in the CSTR Example 

Disturbance  Description 

Step change 
Sample 1-300: Tf  = 400 K 

Sample 301-1000: Tf  = 401 K 

Drift 
Sample 1-300: Tf  = 400 K 

Sample 301-1000: Tf  linearly decreases to 399 K 

Random 

variation 

Sample 1-300: Tf  = 400 K 

Sample 301-1000: Tf  has random variations following N(400, 0.1)  

 

 

(a) 
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(b) 

 

(c) 

Figure 6. Typical alarm patterns in ideal disturbance cases. (a) Step change, (b) drift, (c) random 

variation. 

 Next, we carry out a comprehensive discussion based on the alarm patterns presented in 

Figure 6. In the ideal case of step changes, the controller is considered to take effect and thus 

process dynamics remains normal, in spite of evident operating condition deviations. This 

mechanism well matches the alarm pattern in Figure 6(a), and has been discussed previously as an 

example of disturbance changing the operating condition only. In the ideal case of drift 

disturbances, assuming the drift to be sufficiently slow, the controller can still compensate the 

disturbance continuously. As shown in Figure 6(b), the alarm pattern of drifts is that, a slow 

deviation in the T2 statistic occurs, implying that the process is deviating from its original 

operating condition, whereas the 
2S  and 

2

eS  statistics are below their thresholds, indicating no 

disruptions in process dynamics. For random variations, it takes some time for the controller to 

respond to such abrupt fluctuations, and hence there are always abnormal variations along with 
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operating condition deviations. This is in accordance with the alarm pattern in Figure 6(c) in 

which both T2 and S2 give persistent alarms. Table 6 provides a summary of typical alarm patterns 

of three ideal disturbances. Therefore, three types of disturbance have specific alarm patterns of 

their own, which are potentially useful for further identifying the fault type after the monitoring 

system issues an alarm.  

Table 6. Typical Alarm Patterns of Some Idealized Disturbances 

Monitoring 

Indices 
Step Changes Drifts Random Variations 

2T  & 
2

eT  

either one jumps to a 

high value out of the 

control limit, or both 

either one exceeds the 

control limit gradually, 

or both 

either one exceeds the control 

limit with abrupt variations, 

or both 

2S  & 
2

eS  both remain normal both remain normal 

either one exceeds the control 

limit with abrupt variations, 

or both 

 

Tennessee Eastman Benchmark Process Case Studies 

 The Tennessee Eastman (TE) process36 proposed by Eastman Chemical Company has been 

used as a well-established benchmark for evaluating different process monitoring and fault 

diagnosis approaches.35,37,38 In this study, the plant-wide control strategy proposed by Lyman and 

Georgakis was adopted.39 The simulation code as well as datasets can be downloaded from the 

website of Prof. Richard Braatz. 

 There are two blocks of variables in the TE process: the XMV block with 12 manipulated 

variables XMV(1-12) and the XMEAS block with 41 measured variables XMEAS(1-41). In this 

study, the input variables are chosen as XMV(1-11) and XMEAS(1-22), which are collected in a 

sampling interval of 3 min. The agitation speed is excluded from input variables because it is not 

manipulated.39
 To facilitate analysis of its feedback control mechanism in the sequel, Figure 7 

depicts the plant-wide control structure of the TE process. Monitoring models based on DPCA, 

DICA, CVA and SFA are built using 500 normal samples. For DPCA and DICA, the lag order is 

selected as 2d   according to the method described in Ref. 11. For a fair comparison, we use 
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the same number of lags 2d   for SFA. Cross-validation is used to choose the number of PCs 

and ICs, and the criterion in (26) and (27) is used to choose the number of SFs. For CVA, 

parameters are determined based on the standing results in Ref. 18. Optimal numbers of LVs for 

different models are summarized in Table 7. For all methods, the corresponding 99% control limits 

are calculated. Next, three concrete examples of various disturbances are provided, in which 

disturbances are introduced at the 160th sample. 

 

Figure 7. Flowsheet for the TE Process39 

Table 7. Design Parameter Selection for DPCA, DICA, CVA and SFA 

Model DPCA DICA CVA SFA 

Design parameter #PCs = 22 #ICs = 22 #CVs = 29 #SFs = 55 

IDV(4): Step disturbance in reactor cooling water inlet temperature 

 In this case, a step change occurs in reactor cooling water inlet temperature. As shown in 

Figure 7, the reactor temperature (XMEAS(9)) is controlled by manipulating the reactor cooling 

water flow (XMV(10)) via a cascade controller. Their variation trends in this disturbance case are 

shown in Figure 8. When the disturbance occurs, the reactor temperature suddenly rises and the 

control loop makes a rapid response by increasing the reactor cooling water flow, which drives the 

reactor temperature to its set-point shortly afterwards. Although the increase in the reactor cooling 

water flow indicates an operating condition deviation, this disturbance could be well compensated.  
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Figure 8. Reactor cooling water flow and reactor temperature in IDV(4) 

The process monitoring results for DPCA, DICA, CVA and SFA are shown in Figure 9. In the 

DPCA monitoring results, only the SPE statistic enables a successful detection, while all statistics 

of DICA and CVA take effect. For SFA, the T2 statistic remains at a high value, while both S2 and 

2

eS  statistics reduce sharply toward normal values after the step disturbance. This implies that 

although the operating condition has changed after the step disturbance, the process dynamics is 

not affected because the cascade controller reduces the effect of the disturbance timely. This is in 

line with the physical analysis. In this sense, practitioners should be aware of the fact that this 

disturbance is essentially a normal change in the operating condition that deserves less attention. 

Nevertheless, DPCA-, DICA- and CVA-based monitoring approaches yield incomplete 

information about the control performance. Therefore, SFA is superior to the other three methods 

in filtering out this normal change from various process disturbances. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 9. Monitoring results for a step disturbance in reactor cooling water inlet temperature. (a) 

DPCA, (b) DICA, (c) CVA, (d) SFA. 

IDV(5): Step disturbance in condenser cooling water inlet temperature 

 In this case, a step disturbance occurs in condenser cooling water inlet temperature. The 

mechanism of this disturbance is slightly complicated compared to that of IDV(5), because the 

condenser locates in the major flow path and hence influences the final product flow. When the 

disturbance occurs at the 160th sample, the temperature of condenser underflow rises and a less 



30 

 

amount of products G and H are condensed, which brings a decrease of the stripper level and 

eventually a reduction in the stripper underflow, i.e., the final product flow. Therefore, the 

condenser cooling water flow (XMV(11)) is chosen as the manipulator of the stripper underflow 

(XMEAS(17)) through a PI controller.39 As indicated by two dotted ellipsoids in Figure 10, after 

the disturbance happens, the production flow rate tends to decrease as a large number of 

measurements in the dotted ellipsoid stay below the set-point. The controller then makes 

compensating behaviors by increasing the condenser cooling water flow accordingly. However, 

the process is not stabilized rapidly. As shown in two solid ellipsoids in Figure 10, the majority of 

stripper underflow measurements between 250th sample and 300th sample drop below the set-point 

and the controller makes further adjustments. After 350th sample, the controlled variable gets 

eventually stabilized. 

 

Figure 10. Condenser cooling water flow and stripper underflow in IDV(5) 

The process monitoring results are reported in Figure 11. DPCA makes a correct detection in 

both PC and residual subspaces at the beginning stage of the disturbance; however, it fails to 

reflect the deviation of condenser cooling water flow after the 350th sample, as already revealed in 

Figure 10. All indices of DICA and CVA keep violating the control limits after the 160th sample, 

indicating that an abnormal operating condition occurs all the time. In contrast to the other three 

approaches, the proposed method achieves more reliable monitoring results that are in consensus 

with the physical truth, since both T2 and 
2

eT  statistics sensitively detect the change of operating 

condition whereas the S2 and 
2

eS  statistics show that the control strategy is effective to stabilize 

the process after the 350th sample and there is no need for operators to take actions. 
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(a) 

 

(b) 

 
(c) 

 

(d) 
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Figure 11. Monitoring results for a step disturbance in condenser cooling water inlet temperature. 

(a) DPCA, (b) DICA, (c) CVA, (d) SFA. 

IDV(10): Random variation in C feed temperature 

In this scenario, the C feed temperature is changed with a random variation. Because C feed 

directly enters into the stripper, the random variation in C feed temperature results in a persistent 

fluctuation of stripper temperature after the 160th sample. Consequently, the stripper steam valve 

(XMV(9)) is manipulated in a different manner throughout to alleviate the changes of the stripper 

temperature (XMEAS(18)), as shown in Figure 12, thereby affecting both operating condition and 

process dynamics.  

 

Figure 12. Stripper steam valve opening percentage and stripper temperature in IDV(10) 

Monitoring results are given in Figure 13. DPCA can detect this disturbance from about the 

160th sample. However, there are still a large number of samples below the control limits, thereby 

delivering confusing messages. In comparison with the DPCA-based monitoring, DICA, CVA and 

SFA give alarms correctly up to the end. Their statistics well reveal the variation pattern induced 

by this random disturbance. In addition, the S2 index of SFA signals this disturbance as an alarm 

that practically influences the control performance. This fault is noteworthy for industrial 

practitioners, which differs from the previous two cases. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

Figure 13. Monitoring results for random variation in C feed temperature. (a) DPCA, (b) DICA, (c) 

CVA, (d) SFA. 

Process dynamics in all 21 disturbance cases 

 In 21 disturbance cases of the TE process, it is known that IDV(3), IDV(9) and IDV(15) lead 

to insignificant deviations from the operating condition, and hence are difficult to identify by 

generic monitoring methods.37 However, dynamic behaviors in 21 disturbance cases are unknown. 

Therefore, we examine the system dynamics in 21 disturbance cases according to the monitoring 
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results provided by SFA. The disturbance is introduced at the 160th sample in each case. 

According to the monitoring indices provided by SFA1, 21 disturbances can be qualitatively 

categorized into three classes, as reported in Table 8. 

Table 8. Dynamic Properties of All 21 Disturbances of TE Process 

Category 
Disturbance 

Number 
Disturbance Variable Type 

Disturbances 

without evident 

dynamics 

anomalies 

IDV(3) D feed temperature Step 

IDV(9) D feed temperature Random variation 

IDV(15) Condenser cooling water valve Sticking 

IDV(21) The valve fixed at steady position Constant position 

Disturbances 

with 

short-lived 

dynamics 

anomalies 

IDV(1) A/C feed ratio, B composition constant Step 

IDV(2) B composition, A/C ratio constant Step 

IDV(4) Reactor cooling water inlet temperature Step 

IDV(5) Condenser cooling water inlet temperature Step 

IDV(7) C header pressure loss-reduced availability Step 

Disturbances 

with persistent 

dynamics 

anomalies 

IDV(6) A feed loss Step 

IDV(8) A, B, and C feed composition Random variation 

IDV(10) C feed temperature Random variation 

IDV(11) Reactor cooling water inlet temperature Random variation 

IDV(12) Condenser cooling water inlet temperature Random variation 

IDV(13) Reaction kinetics Slow drift 

IDV(14) Reactor cooling water valve Sticking 

IDV(16) Unknown Unknown 

IDV(17) Unknown Unknown 

IDV(18) Unknown Unknown 

IDV(19) Unknown Unknown 

IDV(20) Unknown Unknown 

IDV(3), IDV(9), IDV(15) and IDV(21) belong to the first category without obvious dynamics 

                                                        
1 Due to the limited space as well as the ease of implementation of the SFA-based method, figures are omitted and 

only results are given. 
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up to the end. The others cause dynamics anomalies to various extent, in which IDV(1), IDV(2), 

IDV(4), IDV(5) and IDV(7) lead to short-lived abrupt variations that can be well mitigated later 

on. In these occasions, the approximated numbers of samples required for compensating 

short-lived dynamics anomalies are tabulated in Table 9. And the remaining disturbances yield 

consistent disruptions in process dynamics. It can be seen that, the plant-wide control strategy 

proposed by Lyman and Georgakis35 can resist the effects of most step disturbances after a period 

of time, whereas most random variations still impose some negative impacts on the process 

dynamics. 

Table 9. Approximated Numbers of Samples Required for Recovery from Short-lived Dynamics 

Anomalies 

 IDV(1) IDV(2) IDV(4) IDV(5) IDV(7) 

Sample No. 290 240 5 190 290 

 

Conclusions and Future Considerations 

 In this article, we have proposed an SFA-based approach for the simultaneous monitoring of 

operating conditions and process dynamics. The slow features are captured using the SFA 

algorithm with clear temporal interpretations. A new strategy to select the number of slow features 

is also proposed by analyzing the slowness of input reconstructions. Four process monitoring 

indices are developed based on the derived slow features and their physical meanings. The 

proposed method can well distinguish real faults that affect control performances from normal 

changes of operating conditions. It is of great importance in practical scenarios because 

unnecessary alarms can be removed and monitoring schemes are able to convey more useful 

information to process operators. Two simulated experiments show the applicability of the 

proposed monitoring approach based on SFA. A future step is to develop related fault diagnosis 

methods, for example, faulty sensor identification40,41, and quality-relevant monitoring solutions10 

for the SFA monitoring framework. 
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Appendix A: The statistical uncorrelation between different js  

 The covariance matrix of between s  can be calculated as 

T T T T T

1 ( 1)diag{ , , }m dt t
     P P P P P Pss zz   .       (A1) 

Therefore 
is  and js  ( )i j  are uncorrelated. 

 

Appendix B: Proof of Proposition 1 

For the calculation of slowness, 
jx  should first be normalized to unit variance: 

T

norm

2
2|| ||

j j

j

j
j t

x
x

x
 

r s

r
.                         (B1) 

Then its slowness can be obtained as: 

T T T

norm 2

T T
( ) ( )

j j j jt
j j t

j j j j

x x   
r ss r r r

r r r r


                 (B2) 

where 
1 ( 1)diag{ , , }m d   , and the last equality holds because 

T

t
ss   proved in 

Appendix A. By replacing 
j  with ( )js , (B2) can further be decomposed as: 

2 2

2 2

( )
( ) ( ) ( )

ji i jii
j i i ii i

ji jii i

r s r
x s s

r r



     


 

 
              (B3) 

where 
2 2/i ji jii

r r    and 1ii
  . This completes the proof. 

 

Appendix C: Proof of Proposition 2 

For a given index k satisfying ( ) ( )k js x   , we show that 
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This completes the proof. 


